33 research outputs found

    Expression of Hsp60 and its cell location in Paracoccidioides brasiliensis

    Get PDF
    Paracoccidioides species cause paracoccidioidomycosis (PCM), a systemic mycosis highly prevalent in Brazil. Therapy of PCM has some issues that make studies for new therapeutic and vaccine targets relevant, such as the P. brasiliensis 60-kDa-heat-shock protein (PbHsp60), an immunogenic antigen that induces protection in experimental mice infection. Here, we investigated the relative expression of mRNA for PbHsp60 in P. brasiliensis in the different morphotypes of P. brasiliensis and in morphological transition phases. In addition, antibodies to rPbHsp60 were produced and used to analyze the location of PbHsp60 in yeast and hyphae by electron microscopy. The analyses showed a substantial increase in the relative amounts of HSP60 mRNA in yeast when compared to mycelium and an intermediate expression in transitional forms. Regarding the cell location, immunoelectron microscopy analysis revealed that PbHsp60 is within the cell wall. These observations suggest that this protein may be involved in the maintenance of the cell wall integrity and the interaction with the host for colonization, infection and pathogenesis

    Screening of yeast strains with pectinolytic activity

    Get PDF
    The present study was undertaken to find yeast strains with high pectinolytic activity. Yeast strains isolated from citrus fruits, were screened for pectinase production. The species with the best pectinase activity was selected to evaluate their ability to produce pectic enzymes by submerged fermentation processes. The effect of different carbon sources on polygalacturonase (PGase) production was studied. Different vegetable tissues were used for tests of maceration with the crude enzyme extract. Among 154 yeast strains isolated, yeast Nº 111 was positive for pectinase activity and was identified as Geotrichum sp. Maximum PGase production obtained was 90.7 EU/ml when this yeast grown in shake flasks under the presence of glucose and citrus pectin as carbon sources. All tissues studied were macerated by the enzyme extract, microscopic examination showed a suspension of loose single cells. Lysis of cells was not observed.El objetivo del presente trabajo fue el aislamiento de cepas de levaduras con buena actividad pectinolítica. Las levaduras aisladas a partir de frutas cítricas fueron seleccionadas en base a sus actividades pectinolíticas. Se evaluó la capacidad de producción de enzimas pécticas por fermentación en medio líquido de la levadura con mayor actividad pectinolítica. Se estudió la influencia de diferentes fuentes de carbono sobre la producción de poligalacturonasa (PGasa) y la capacidad macerante de los extractos enzimáticos sobre tejidos vegetales. De 154 levaduras aisladas, la cepa Nº 111 mostró actividad pectinolítica y fue identificada como Geotrichum sp. La máxima producción de PGasa obtenida fue de 90,7 EU/ml, cuando esta levadura creció en medio líquido con glucosa y pectina de citrus como fuentes de carbono. Los tejidos vegetales estudiados fueron macerados por el extracto enzimático. El examen microscópico mostró células simples liberadas, no observándose lisis por destrucción de la pared celular.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Construção do modelo SECI no projeto VISIR+: um estudo de caso das práticas e iniciativas de compartilhamento de conhecimento interorganizacional

    Get PDF
    O compartilhamento de conhecimento entre organizações, grupos e indivíduos, contribui significativamente para a criação de novos conhecimentos, bem como, para o aperfeiçoamento de conhecimentos existentes, esse processo resulta na espiral de criação do conhecimento, também conhecido como modelo SECI (Socialização, Externalização, Combinação e Internalização). Esta pesquisa foi sustentada pelo exemplo de compartilhamento de conhecimento interorganizacional presente no projeto VISIR+, o qual foi criado com o propósito de disseminar o laboratório remoto VISIR na América Latina. O VISIR é uma ferramenta educacional que permite testes de circuitos elétricos e eletrônicos de modo seguro e real, colaborando de forma benéfica em cursos de ensino a distância, bem como apoio em aulas presenciais. O VISIR+ é composto por uma parceria entre IESs europeias e latino-americanas. No Brasil, uma das IES participantes do projeto VISIR+ é a Universidade Federal de Santa Catarina, representada pelo Laboratório de Experimentação Remota (RExLAB). Além da implementação do VISIR na Universidade, o RExLab foi responsável por duas associadas. Esta pesquisa tem como como objetivo identificar as práticas e iniciativas de compartilhamento e criação do conhecimento, a partir do modelo SECI, na atuação do RExLab no âmbito do projeto VISIR+. Entre os resultados encontrados, tem-se a construção da representação gráfica e concreta do modelo SECI, correspondente a espiral do conhecimento, constatado por meio da interação cíclica e dinâmica entre o conhecimento tácito e explícitoN/

    Utilização do laboratório remoto VISIR como recurso educacional num curso de engenharia mecatrônica

    Get PDF
    Este documento descreve uma iniciativa de integração de laboratórios remotos em um curso de engenharia mecatrônica, através do VISIR (Sistema de Instrumento Virtual em Realidade). Por se tratar de um programa de cooperação internacional, o VISIR é um laboratório remoto reconhecido mundialmente, que permite simular de forma remota uma série de circuitos eletroeletrônicos como se estivesse em um laboratório convencional. No entanto, no Brasil o VISIR chega recentemente e caracteriza-se como um recurso de apoio ao processo de ensino e de aprendizagem em cursos superiores de engenharia. O presente estudo foi conduzido com o objetivo verificar, a partir da perspectiva dos alunos, os pontos relevantes sobre o uso do VISIR como recurso educativo no curso de engenharia mecatrônica, através de um estudo de caso de uma turma da disciplina Instrumentação I. Os alunos montaram um circuito eletroeletrônico, realizando testes e validações dos resultados e foram capazes de compará-los com as respostas obtidas em um laboratório convencional. Após esta etapa, os alunos responderam a um questionário com 10 perguntas fechadas relatando sua experiência de aprendizagem usando VISIR. Com a análise das respostas foi possível confirmar a viabilidade da utilização do VISIR para este grupo de estudantes de engenharia mecatrônica, como contribuinte para a qualificação desses futuros profissionais.info:eu-repo/semantics/publishedVersio

    Laboratórios Remotos no Ensino de Engenharia

    Get PDF
    O presente capítulo contém uma seleção de artigos que foram apresentados na Sessão Dirigida: Laboratórios remotos no ensino da engenharia, realizada durante o XLIV Congresso Brasileiro de Educação em Engenharia (COBENGE), de 27 a 30 de setembro de 2016, em Natal, Rio Grande do Norte. Essa Sessão Dirigida propôs mostrar trabalhos que viessem a apresentar experiências baseadas em laboratórios remotos no ensino de engenharia, a fim de discutir e demonstrar as práticas ou técnicas propostas pelos grupos em diferentes realidades. Buscou, assim, expor pontos positivos e negativos para potenciais disseminações de projetos com semelhantes contextos. Portanto, o objetivo da Sessão Dirigida foi proporcionar um ambiente para discussão e reflexão referente à integração dos laboratórios remotos no ensino de engenharia. Os cinco artigos apresentados neste capítulo foram selecionados entre aqueles que receberam a qualificação a partir da apresentação oral na Sessão Dirigida ou como convidados. O primeiro, escrito por Thiago Schaedler Uhlmann e Luciano Antonio Mendes, da Pontifícia Universidade Católica do Paraná (PUC-PR), é intitulado “Jogos remotos: perspectivas de aplicação conjunta de aprendizagem baseada em jogos e experimentação remota no ensino de engenharia”. Tem como objetivo geral identificar possibilidades acerca do emprego da Aprendizagem Baseada em Jogos, associada a recursos de experimentação remota, no ensino de engenharia. O segundo artigo selecionado foi escrito por Ana M. B. Pavani; Delberis A. Lima; Guilherme P Temporão; Vanessa A. P. Lima, vinculados à Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO). O documento, intitulado “Implantação de um laboratório remoto: um projeto de múltiplas facetas”, busca descrever a experiência de iniciar a implantação de um laboratório remoto nessa instituição, no âmbito do Projeto VISIR+. O terceiro artigo, “Projetos de experimentos remotos como estratégia for- mativa para estudantes de engenharia”, foi escrito por Eduardo Kojy Takahashi; Rubens Gedraite; Hermes Gustavo Fernandes Neri; Dayane Carvalho Cardoso e Rener Martins de Moura, da Universidade Federal de Uberlândia (UFU). Os autores buscam apresentar uma possibilidade metodológica de formação básica de estudantes de engenharia, a partir do desenvolvimento colaborativo de projetos envolvendo experimentação remota e com o engajamento de professores-pesquisadores, estudantes de engenharia e estudantes do ensino médio que apresentem um potencial para a carreira de engenharia. O quarto artigo, intitulado “Percepções acerca de experimentos remotos no contexto de um curso de especialização em Educação em Engenharia e Ciências Exatas”, foi escrito por Luciano Andreatta Carvalho da Costa, da Universidade Estadual do Rio Grande do Sul (UERGS). No documento, o autor busca apresentar as percepções dos estudantes de um curso de especialização em Educação em Engenharia e em Ciências Exatas na UERGS, no âmbito da utilização de laboratórios remotos, a partir de uma disciplina ministrada no curso que trata do tema dos experimentos online e seus impactos para a formação na área tecnológica. O quinto artigo, “Programa de cooperação interinstitucional para experimentação remota nos processos de ensino e de aprendizagem de engenharia”, é de autoria de Gabriela Rocha Roque (Faculdade SATC); Josiel Pereira e Simone Meister Sommer Bilessimo, da Universidade Federal de Santa Catarina (UFSC). O documento descreve a uma iniciativa de cooperação entre duas instituições de ensino superior, a UFSC e a Faculdade SATC. Cooperação esta motivada pela integração de tecnologia no ensino de engenharia, através da utilização e do compartilhamento dos recursos de laboratórios de experimentação remota.info:eu-repo/semantics/publishedVersio

    Expanding the knowledge about Leishmania species in wild mammals and dogs in the Brazilian savannah

    Get PDF
    Background: Wild, synanthropic and domestic mammals act as hosts and/or reservoirs of several Leishmania spp. Studies on possible reservoirs of Leishmania in different areas are fundamental to understand host-parasite interactions and develop strategies for the surveillance and control of leishmaniasis. In the present study, we evaluated the Leishmania spp. occurrence in mammals in two conservation units and their surroundings in Brasília, Federal District (FD), Brazil. Methods: Small mammals were captured in Brasília National Park (BNP) and Contagem Biological Reserve (CBR) and dogs were sampled in residential areas in their vicinity. Skin and blood samples were evaluated by PCR using different molecular markers (D7 24Sα rRNA and rDNA ITS1). Leishmania species were identified by sequencing of PCR products. Dog blood samples were subjected to the rapid immunochromatographic test (DPP) for detection of anti-Leishmania infantum antibodies. Results: 179 wild mammals were studied and 20.1% had Leishmania DNA successfully detected in at least one sample. Six mammal species were considered infected: Clyomys laticeps, Necromys lasiurus, Nectomys rattus, Rhipidomys macrurus, Didelphis albiventris and Gracilinanus agilis. No significant difference, comparing the proportion of individuals with Leishmania spp., was observed between the sampled areas and wild mammal species. Most of the positive samples were collected from the rodent N. lasiurus, infected by L. amazonensis or L. braziliensis. Moreover, infections by Trypanosoma spp. were detected in N. lasiurus and G. agilis. All 19 dog samples were positive by DPP; however, only three (15.8%) were confirmed by PCR assays. DNA sequences of ITS1 dog amplicons showed 100% identity with L. infantum sequence. Conclusions: The results suggest the participation of six species of wild mammals in the enzootic transmission of Leishmania spp. in FD. This is the first report of L. amazonensis in N. lasiurus

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meters composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ^18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37^oN. The benthic δ^18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene (‘41-kyr world’) when boundary conditions differed significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ^18O surpassed ~ 3.3-3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles.This research was supported by the Natural Environmental Research Council Grant NE/K005804/1 to DH and LS and NE/J017922/1 to DH.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.gloplacha.2015.07.00

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene (‘41-kyr world’) when boundary conditions differed significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ18O surpassed ~ 3.3–3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles

    Two euAGAMOUS genes control C-function in Medicago truncatula

    Get PDF
    [EN] C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development. In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage required to specify the C-function in M. truncatula.This work was funded by grants BIO2009-08134 and BIO2012-39849-C02-01 from the Spanish Ministry of Economy and Competitiveness and the Ramon y Cajal Program (RYC-2007-00627 to CGM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Serwatowska, J.; Roque Mesa, EM.; Gómez Mena, MC.; Constantin, GD.; Wen, J.; Mysore, KS.; Lund, OS.... (2014). Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS ONE. 9(8):103770-1-103770-12. https://doi.org/10.1371/journal.pone.0103770S103770-1103770-1298Prunet, N., & Jack, T. P. (2013). Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Flower Development, 3-33. doi:10.1007/978-1-4614-9408-9_1Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010). Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology, 21(1), 73-79. doi:10.1016/j.semcdb.2009.10.005Irish, V. F. (2010). The flowering of Arabidopsis flower development. The Plant Journal, 61(6), 1014-1028. doi:10.1111/j.1365-313x.2009.04065.xHeijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box Genes and Floral Development: the Dark Side. Journal of Experimental Botany, 63(15), 5397-5404. doi:10.1093/jxb/ers233Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., & Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346(6279), 35-39. doi:10.1038/346035a0Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-rPinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023Kramer, E. M., Jaramillo, M. A., & Di Stilio, V. S. (2004). Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics, 166(2), 1011-1023. doi:10.1534/genetics.166.2.1011Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0Irish, V. F. (2003). The evolution of floral homeotic gene function. BioEssays, 25(7), 637-646. doi:10.1002/bies.10292Zahn, L. M., Leebens-Mack, J. H., Arrington, J. M., Hu, Y., Landherr, L. L., dePamphilis, C. W., … Ma, H. (2006). Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evolution Development, 8(1), 30-45. doi:10.1111/j.1525-142x.2006.05073.xFerrandiz, C. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Ma, H., Yanofsky, M. F., & Meyerowitz, E. M. (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development, 5(3), 484-495. doi:10.1101/gad.5.3.484Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xKapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S., & Takatsuji, H. (2002). Role of petuniapMADS3in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant Journal, 32(1), 115-127. doi:10.1046/j.1365-313x.2002.01402.xPan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., & Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6(2), 163-173. doi:10.1105/tpc.6.2.163Dreni, L., & Kater, M. M. (2013). MADSreloaded: evolution of theAGAMOUSsubfamily genes. New Phytologist, 201(3), 717-732. doi:10.1111/nph.12555Brunner, A. M. (2000). Plant Molecular Biology, 44(5), 619-634. doi:10.1023/a:1026550205851Perl-Treves, R., Kahana, A., Rosenman, N., Xiang, Y., & Silberstein, L. (1998). Expression of Multiple AGAMOUS-Like Genes in Male and Female Flowers of Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 39(7), 701-710. doi:10.1093/oxfordjournals.pcp.a029424Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., … Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant Journal, 17(1), 51-62. doi:10.1046/j.1365-313x.1999.00351.xDong, Z., Zhao, Z., Liu, C., Luo, J., Yang, J., Huang, W., … Luo, D. (2005). Floral Patterning in Lotus japonicus. Plant Physiology, 137(4), 1272-1282. doi:10.1104/pp.104.054288Hofer, J. M., & Noel Ellis, T. (2014). Developmental specialisations in the legume family. Current Opinion in Plant Biology, 17, 153-158. doi:10.1016/j.pbi.2013.11.014Fourquin, C., del Cerro, C., Victoria, F. C., Vialette-Guiraud, A., de Oliveira, A. C., & Ferrándiz, C. (2013). A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus. Plant Physiology, 162(2), 907-917. doi:10.1104/pp.113.217570Hewitt EJ (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, UK: Commonwealth Agricultural Bureau.Cheng, X., Wang, M., Lee, H.-K., Tadege, M., Ratet, P., Udvardi, M., … Wen, J. (2013). An efficient reverse genetics platform in the model legumeMedicago truncatula. New Phytologist, 201(3), 1065-1076. doi:10.1111/nph.12575D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.xTadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.xCheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73Constantin, G. D., Krath, B. N., MacFarlane, S. A., Nicolaisen, M., Elisabeth Johansen, I., & Lund, O. S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 40(4), 622-631. doi:10.1111/j.1365-313x.2004.02233.xWesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xGuerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy R, editor. Plant Molecular Biology. Oxford, UK: Bios Scientific Publishers, Academic Press. pp. 121–147.Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xBenlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.xRoque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., … Cañas, L. A. (2012). Functional specialization of duplicated AP3-like genes inMedicago truncatula. The Plant Journal, 73(4), 663-675. doi:10.1111/tpj.12068Flanagan, C. A., Hu, Y., & Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. The Plant Journal, 10(2), 343-353. doi:10.1046/j.1365-313x.1996.10020343.xSieburth, L. E., & Meyerowitz, E. M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell, 9(3), 355-365. doi:10.1105/tpc.9.3.355Busch, M. A. (1999). Activation of a Floral Homeotic Gene in Arabidopsis. Science, 285(5427), 585-587. doi:10.1126/science.285.5427.585Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329Grønlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., & Lund, O. S. (2008). Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research, 135(2), 345-349. doi:10.1016/j.virusres.2008.04.005Mandel, M. A., Bowman, J. L., Kempin, S. A., Ma, H., Meyerowitz, E. M., & Yanofsky, M. F. (1992). Manipulation of flower structure in transgenic tobacco. Cell, 71(1), 133-143. doi:10.1016/0092-8674(92)90272-eMizukami, Y., & Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71(1), 119-131. doi:10.1016/0092-8674(92)90271-dCannon, S. B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., … Young, N. D. (2006). Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences, 103(40), 14959-14964. doi:10.1073/pnas.0603228103Young, N. D., & Bharti, A. K. (2012). Genome-Enabled Insights into Legume Biology. Annual Review of Plant Biology, 63(1), 283-305. doi:10.1146/annurev-arplant-042110-103754Jager, M. (2003). MADS-Box Genes in Ginkgo biloba and the Evolution of the AGAMOUS Family. Molecular Biology and Evolution, 20(5), 842-854. doi:10.1093/molbev/msg089Johansen, B., Pedersen, L. B., Skipper, M., & Frederiksen, S. (2002). MADS-box gene evolution—structure and transcription patterns. Molecular Phylogenetics and Evolution, 23(3), 458-480. doi:10.1016/s1055-7903(02)00032-5Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., … Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce ( Picea mariana ) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal, 15(5), 625-634. doi:10.1046/j.1365-313x.1998.00250.xParcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395(6702), 561-566. doi:10.1038/26903Causier, B., Bradley, D., Cook, H., & Davies, B. (2009). Conserved intragenic elements were critical for the evolution of the floral C-function. The Plant Journal, 58(1), 41-52. doi:10.1111/j.1365-313x.2008.03759.xAiroldi, C. A., & Davies, B. (2012). Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. Journal of Genetics and Genomics, 39(4), 157-165. doi:10.1016/j.jgg.2012.02.008Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., … Lozano, R. (2010). Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato. PLoS ONE, 5(12), e14427. doi:10.1371/journal.pone.0014427Kater, M. M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M. M., & Angenent, G. C. (1998). Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. The Plant Cell, 10(2), 171-182. doi:10.1105/tpc.10.2.171Tsuchimoto, S., van der Krol, A. R., & Chua, N. H. (1993). Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. The Plant Cell, 5(8), 843-853. doi:10.1105/tpc.5.8.843Airoldi, C. A., Bergonzi, S., & Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences, 107(44), 18898-18902. doi:10.1073/pnas.1009050107Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., & Davies, B. (2005). Evolution in Action: Following Function in Duplicated Floral Homeotic Genes. Current Biology, 15(16), 1508-1512. doi:10.1016/j.cub.2005.07.063Birchler, J. A., & Veitia, R. A. (2007). The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics. The Plant Cell, 19(2), 395-402. doi:10.1105/tpc.106.049338Birchler, J. A., & Veitia, R. A. (2009). The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist, 186(1), 54-62. doi:10.1111/j.1469-8137.2009.03087.xEdger, P. P., & Pires, J. C. (2009). Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research, 17(5), 699-717. doi:10.1007/s10577-009-9055-9Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.368140

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore